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The continuous symmetry measures approach, designed to assess quantitatively the degree of any symmetry within
any structure, is extended to the important class of the polyhedra. For this purpose, we developed a general
methodology and a general computational tool, which identify the minimal distance of a given structure to a
desired general shape with the same number of vertexes. Specifically, we employ this tool to evaluate quantitatively
the degree of polyhedricity within distorted polyhedra, taking as examples the most central and abundant polyhedral
structures in chemistry in general and in coordination chemistry in particular, namely the tetrahedron, the bipyramid,
the octahedron, the cube, the icosahedron, and the dodecahedron. After describing the properties of the symmetry
measurement tool, we show its application and versatility in a number of cases where the deviation from exact
symmetry has been an issue, includingz-axis Jahn-Teller type polyhedral distortions, tantalum hydride complexes,
pentacoordinated zinc complexes, tetrahedral/octahedral Sn complexes, and icosahedrally distorted C60-fullerene
anions.

1. Background

We have been advancing the notion, from the conceptual level
up to practical applications, that there are certain advantages in
treating symmetry as a structural property of continuous nature.1

Symmetry has traditionally functioned as a condensed language
for the description and classification of molecular and supra-
molecular shapes and structures and as an identifier of both
apparent and inherent correlations between structure and physi-
cal properties of matter. Our study of symmetry has been based
on the thesis that perfect symmetry is rarely attainable in reality;
much more often than not, molecules arenot symmetric. To
realize it, one has to refine the resolution of observation, spatial
or temporal, up to the point where it becomes evident. Consider,
for instance, the observation of “symmetric” molecules on time
scales that are faster then typical vibrations or rotation rates, or
consider the local distortive forces on “symmetric” molecules
in the condensed phase. Symmetry has served as an ap-
proximate, idealized descriptive language of this reality, and
while it is true that an imprecise language helps in grasping
complex situations and in identifying first-order trends, the
danger of missing important intricate details of the complexity
by this practice is there.

A natural approach to the treatment of the imprecise nature
of symmetry is to allow flexibility in its description, namely,
as mentioned above, to treat it as a structural property of
continuousnature, complementary to the classical discrete point
of view, as indeed proposed by several research groups.2 A
list of stringent demands must be fulfilled by any proposed

continuos symmetry scale. Among these demands are the ability
to express quantitatively how much of a given symmetry there
is in any (distorted) structure, at any temporal resolution, at any
spatial resolution, and with respect to any ideal element or group
symmetry, the ability to express the distortion with asingle
parameter, the ability to compare all symmetries on the same
scale, and the freedom from the need to select an arbitrary
reference structure. The solution to the symmetry measurement
problem, which we have proposed in a series of papers since
1992,3 was shown to fulfill these requirements. It has proven
to be general and practical and has passed the critical test of
identifying quantitative correlations between the degree of
symmetry and molecular properties in a wide variety of systems,
examples of which are collected in ref 4. Furthermore, it has
also passed the test that in our view is the most crucial one,
namely, that in all of these studied cases, the identified
correlations between property and symmetry translate correctly
the physical qualitative intuition that one may have a priori on
the existence and direction of such correlations.

In this report, we extend our methodology to the family of
the high symmetries of the classical, perfect polyhedra,5 the
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regular, Platonic polyhedra, namely, the tetrahedron, the octa-
hedron, the cube, the icosahedron, and the dodecahedron, as
well as to theDnh equilateral bipyramids, taking the trigonal
bipyramid as a case example. These polyhedra represent also
the prism (cube) and antiprism (octahedron) polyhedra families.5

The role that these structures play in chemistry and in particular
in coordination chemistry is so central6 that only with this report
we feel that we begin to approach completion of the continuous
symmetry measures (CSM) methodology as a general working
tool.

The development described here provides a practical and
convenient way of answering questions such as “how much
octahedricity is there in a distorted octahedron?”; “which in a
set of icosahedral fullerenes is the most distorted one?”; “what
is the degree of a Jahn-Teller degeneracy removal distortion?”;
“by how much does the symmetry of a fluxional bipyramid
change along the isomerization mode?”; and so on. We
investigate currently several of these key questions; at the
moment we devote this report to the methodology itself, its
underlying base, its properties, and its application to some real
data.

2. Continuous Symmetry Measure

The design of a measurement tool, which translates the
concept of continuous symmetry into practice, involves a certain
degree of arbitrariness, in the sense that one has to decide on
issues such as how should the zero-reference level be set, what
should be the maximal value, what should be the actual
measurement yardstick, what normalization procedures should
one employ, and so on. Having this in mind, we set up to base
the symmetry measure on a definition that would be as
minimalistic as possible.3a The amount of a given symmetry
in a structure is a function of the minimal distance that the
vertexes of the structure have to undergo in order for it to attain
the desired symmetry. In a more formal way, the continuous
symmetry measure (CSM) of the original structure is a normal-
ized root-mean-square deviation from the closest structure with
the desired symmetry. It is a distance function the end point
of which is being searched. We emphasize the generality of
this definition. It does not seek the distance to a preset reference
structure;2d,e but to a required symmetry. Thus, given a
(distorted) structure composed ofN vertexes, the coordinates
of which are given by the vector{Qk, k ) 1, 2, ...,N}, we
search for the vertex coordinates{P̂k, k ) 1, 2, ...,N} of the
nearest perfectly G-symmetric object (G being a specific
symmetry group) and define the symmetry measure as

HereQ0 is the coordinate vector of the center of mass of the
investigated structure

The CSM defined in (1) is independent of the position,
orientation, and size of the original structure. Equation 1 is
general and allows one to evaluate the symmetry measure of
any shape relative toany symmetry group G or element.
|Q - P|2 is a “measure” (a metric), the units of which are length
squared. To avoid size effects, the size of the original structure
is normalized to the rms distance from the center of mass of
the structure (placed at the origin) to all vertexes. As proven
below, the bounds are 100g Sg 0. However, since the practice
in symmetry-related studies has been to focus on small
distortions, we found it convenient to expand the 0-1 range
by a factor of 100. If a structure has the desired G-symmetry,
S(G) ) 0. The symmetry measure increases as it departs from
G-symmetry and reaches a maximal value (not necessarily
100).3b All S(G) values, regardless of G, are on the same scale
and are therefore comparable; one can compare the degree of,
say, octahedricity of various distorted octahedral complexes,
the symmetry content of various symmetry subgroups in one
octahedron (C3-ness,C3V-ness, etc.), and even different sym-
metries in different objects.

Since the use of similarity or distance functions as structural
descriptors is a known approach,7 it is in order to reiterate a
unique aspect of eq 1, mentioned briefly above. A standard
approach has been to define aspecific (ideal) reference structure,
identified through a specific set of (Cartesian or symmetry2)
coordinates and to find the distance of the studied structure from
this preset reference. A more general and demanding task,
adapted by the CSM approach, has been tofind the coordinates
of the nearest ideal reference structure (the perfectly symmetric
one).2d For example, if one wishes to determine the degree of
C3V-ness in a tetrahedron, the nearestC3V structure out of an
infinite library is searched, located, and displayed.3b,8

3. Polyhedral CSM Approach: The Distance to a Shape

The main practical problem is then how to find the nearest
structure that has the desired symmetry, namely how to locate
the specific set ofP̂’s that minimizes eq 1. In a series of papers,
a detailed solution to that problem was provided, which is based
on what we termed the “folding-unfolding” algorithms. It is
a general approach, which analyzesall of the elements that
comprise a given symmetry point group (see detailed description
in refs 3 and 9). We found, however, that the large number of
symmetry elements of the perfect polyhedra renders the fold-
ing-unfolding approach cumbersome beyond the tetrahedron.3b

As a consequence and without giving away any of the generality
and restrictions imposed by the definition of the CSM (eq 1),
we developed and present here a different approach that allows
one to evaluate the degree of perfect polyhedral symmetry in

(4) Examples include the following. (a) Application of centrosymmetry
measure as an order parameter in the study of the melting point of
icosahedral clusters: Buch, V.; Greshgoren, E.; Zabrodsky Hel-Or,
H.; Avnir, D. Chem. Phys. Lett.1995, 247, 149. (b) Quantitative
investigation of the chirality properties of the cyclic trimer of water
and of its enantiomerization pathways: Pinto, Y.; Zabrodsky Hel-Or,
H.; Avnir, D. J. Chem. Soc., Faraday Trans.1996, 92, 2523. (c)
Analysis of the correlation between the degree of centrosymmetry and
hyperpolarizability: Kanis, K. D.; Wong, J. C.; Marks, T. S.; Ratner,
M. A.; Zabrodsky, H.; Keinan, S.; Avnir, D.J. Phys. Chem.1995,
99, 11061. (d) Quantitative analysis of the chirality of large random
objects: Katzenelson, O.; Zabrodsky Hel-Or, H.; Avnir, D.Chem.
Eur. J.1996, 2, 174. Avnir, D.; Katzenelson, O.; Zabrodsky Hel-Or,
H. Chem. Eur. J.1996, 2, 744. (e) Analysis of the macroscopic chirality
of Pasteur’s tartrate crystals: Keinan, S.; Zabrodsky Hel-Or, H.; Avnir,
D. Enantiomer1996, 1, 351 and refs 21 and 22 below.

(5) Hargittai, I.; Hargittai, M.Symmetry through the eyes of a chemist,
2nd ed.: Plenum Press: N.Y., 1995.

(6) Muller, U. Inorganic Structural Chemistry, 2nd ed.; Wiley & Sons:
Chichester, 1992.

(7) Rouvray, D. H.Top. Curr. Chem.1995, 173, 1. Petitjean, M.J. Chem.
Inf. Comput. Sci.1996, 36, 1038.
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classical (distorted) polyhedra, overcoming the difficulty of
many elements in a group. As mentioned above, these include
as examples (but are not limited to) the regular polyhedra
(tetrahedron, octahedron, cube, icosahedron, and dodecahedron)
and the bipyramids.

The solution is general from a point of view not shared with
the folding-unfolding algorithms; it allows one to determine
the distance from any required shape (“shape” and not “struc-
ture”: the latter is a specific reference with specific coordinates,
while the former does not specify size, orientation, etc). The
target shape may be of polyhedral symmetry, of lower sym-
metry, or even distorted with no symmetry. Here we concentrate
on the perfect polyhedral shapes, but practically all of the
considerations and results detailed below are applicable to any
other target shape. (Application of this general solution to other
shapes and symmetries is planned for subsequent reports.) Thus,
since the general shape of a polyhedron is a readily attainable
information input, the complex case of evaluating the degree
of prefect polyhedricity is simplified; it is reduced to the search
of the size and orientation of the perfectly symmetric target.
Let us then describe the methodology.

Given a distorted polyhedron withN vertexes, the coordinates
of which are given by the vector{Qk, k ) 1, 2, ...,N} (Figure
1a), we search for the vertex coordinates{P̂k, k ) 1, 2, ...,N}
of the nearest perfectly symmetric polyhedron (Figure 1b), as
defined above through eq 1. By perfectly symmetric we mean
here the highest possible symmetry group (e.g.,Td for a four-
vertex configuration). For all polyhedra taken as examples here,
except the trigonal bipyramid, this also means equal distance
from the center of mass to all vertexes. This, however, is not
an intrinsic requirement in the methodology; the ideal trigonal
bipyramid we selected is of equal faces, and this dictates unequal
distances from the center of mass to the vertexes (which,
nevertheless, are simply interrelated). By distorted we mean
polyhedra that are of symmetry lower than that highest (say, a
C3-tetrahedron and, obviously, aC1 polyhedron and so on). To
be useful for analysis of complexes, the central atom is included,
if desired, as well (Figure 1c,d). No connectivity is assumed
here; the connectivity displayed in Figure 1 serves only for
graphical convenience. The polyhedral CSM is determined by
the following multiple minimizations procedure.

1. The coordinates of the center of mass of the nonsymmetric
N-polyhedron (for example, a distorted octahedron, Figure 1a)

are calculated, and the polyhedron is placed at the origin of
Cartesian coordinates, i.e., atQ0 ) 0 (eq 2). The orientation
and size are either arbitrary or selected for convenience of
computation.

2. The target shape, a perfectN-polyhedron of size 1 (a
perfect octahedron, in our example), is also placed atQ0 ) 0
with an arbitrary orientation and with arbitrary vertex labeling,
{P0k, k ) 1, 2, ...,N}. This defines the searched generalshape.
This preliminary prototype structure isnot of minimal distance
from the nonsymmetric structure. It defines the desired shape
and serves as a starting point for the minimization search
procedure.

3. The transformation that the setP0k has to undergo to yield
the desired set ofP̂k, namely the set which is closest toQk, is
now to be determined. This means that one should determine
the isotropic scaling factor,A, the rotation (3× 3) matrix,R,
and the displacement (3× 1) vector, T, all for the desired
transformation ofP0k:

It follows that finding a symmetric polyhedron that will be the
most similar (in the root-mean-square sense) to the starting
polyhedron amounts to obtainingA, R, and T from the
minimization of the sum function

Several minimizations are involved here. In Appendix A we
detail the derivations and technical details involved in these
minimizations, which are the following ones.

4. Minimization ofT leads toT ) 0 (Appendix A), i.e., the
selection to place the two polyhedra at the same origin (step 2)
renders this minimization unnecessary. The resultT ) 0 means

(8) The term “continuous” is used here in contradistinction to “either/
or”. It is a general term that has been used with various connotations.
For instance, in physics, continuous symmetry means that by perform-
ing a continuous transformation of a set of parameters on a physical
system it acts the same way everywhere and at all times (Gross, D. J.
Proc. Natl. Acad. Sci. U.S.A.1993, 93, 14256). Lie groups used for
gauge symmetries are another place where this term is used, especially
in the context of invariance to continuous changes in the coordinates
of observation (Rosen, J.Found. Phys. 1990, 20, 283. Pons, J. M.
Mod. Phys. Lett. 1994, 9, 2903). Of relevance are also several studies
in spectroscopy. Thus, continuity was suggested for asymmetric rotors
(King, G. W.; Heiner, R. M.; Cross, P. C.J. Phys. Chem. 1942, 11,
27), although the parameter developed there does not measure the
distance from specific symmetries. Near-symmetry has been also
treated in spectroscopy in terms of perturbation theory: Bunker, P.
R. Molecular Symmetry and Spectroscopy; Academic Press: New
York, 1979; Chapter 11. Symmetry of nonrigid molecules was treated
in the following: Longuet-Higgins, H. C.Mol. Phys. 1967, 6, 445.
Louk, J. D.; Galbreith, H. W.ReV. Mod. Phys. 1976, 48, 69. The latter
reference was through the use of Eckart vectors. Yet another worth
noting approach to the expression of structural deviation is the use of
matrix elements, which are a power-series expansion in normal modes
displacements: Frey, R. F.; Davidson, E. R.J. Chem. Phys. 1988,
88, 1775. See also refs 2d and e.

(9) (a) Zabrodsky Hel-Or, H.; Peleg, S.; Avnir, D.AdV. Mol. Struct. Res.
1995, 1, 1. (b) Zabrodsky Hel-Or, H.; Peleg, S.; Avnir, D.J. Am.
Chem. Soc. 1995, 117, 462.

Figure 1. Polyhedral symmetry measures approach evaluates the
degree of symmetry content in distorted polyhedra. For instance, here
we evaluate the degree of octahedricity of the distorted octahedron,a.
The approach is to search for the nearest structure with the desired
symmetry,b, identify it, and calculate the distance to it using eq 5.
From this equation, the degree of octahedricity ofa is S(Oh) ) 14.95.
Symmetry analyses can also be carried out with the inclusion of the
central atom, as inc (the distorted one), leading tod (the nearest
symmetric one). This example was selected too to giveS(Oh) ) 14.95
as well (cf., caption of Figure 2).

Pk ) ARP0k + T (3)

J ) ∑
k)1

N

|Qk - Pk|2 ) ∑
k)1

N

|Qk - (ARP0k + T)|2 (4)
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also that the centers of mass do not move from the origin
following this minimization search.

5. The spatial mutual orientation of the two structures is
minimized. This is done by determination of the elements of
the rotation matrixR that yield the minimalJ.

6. The size difference between the polyhedra is minimized
by determination of the isotropic scaling factor,A. Together
with the minimization of step 5, this leads to best overlap of
the two polyhedra. These two minimizations can be carried
out in reverse order without affecting the outcome (see Appendix
A).

7. The next minimization is over the labeling of the vertexes,
i.e., minimizations 5 and 6 are repeated over all possible
corresponding pairings between the vertexes of the prototype
and nonsymmetric polyhedra in order to locate the set of{Qk

∼ Pj, k, j ) 1, 2, ...,N} that minimizesJ (eq 4). The total
number of repetitions equalsN!. In most cases, the cor-
respondence of vertexes of the prototype and nonsymmetric
polyhedra can be specified a priori, and then minimization 7 is
not needed. In fact, for polyhedra that exceed eight to nine
vertexes, prepairing is desirable in order to save on computing
time which grows asN!.

8. As detailed in Appendix A, these minimizations lead to

where the upper index, t, shows the transposition of the matrix
or vector. The minimalS is calculated from eq 5. UsingP̂k )
ARP0k, one obtains the structure of the nearest symmetric
polyhedron (Figure 1b). Like the parent eq 1, eq 5 is also bound
within the interval 100g Sg 0;10 the symmetry measure attains
its minimum value (S ) 0) when the structure has the desired
symmetry. In this caseP0i

t RtQi ) |Qi| ) Q ) const so that the
ratio in square brackets in eq 5 is equal to 1. The maximal
value of 100 is obtained for cases where the nearest object with
the desired symmetry is the center point. (An example would
be the degree of hexagonality of a pentagon; the nearest hexagon
to a pentagon is that center point, and because of the size
normalization, the distance to it is 1× 100.) Otherwise its upper
limit is less than 100 and depends on the polyhedron type and
on the specific structure that is analyzed, as shown in the next
section.

We conclude this section with a few comments:
i. In symmetry analyses of polyhedral coordination com-

plexes it is often of relevance and of interest to include also the
central atom. The procedure for such cases follows the same
eight steps, and parts c and d of Figure 1 exemplify it. Note
that the center of mass (step 1) need not coincide with the central

atom in the distorted polyhedron (Figure 1c) but must coincide
with it in the nearest symmetric one (Figure 1d).

ii. Earlier, we proved that the folding-unfolding algorithm
leads to the minimalS value;3,8 here the minimization is the
procedure itself.11

iii. It is clear now that this method and its resulting eq 5 are
a general solution to the problem of finding the minimal distance
from any shape. It applies to all cases where the general shape
of the desired nearest structure is known but not its size and
orientation.

iv. In Appendix B, we derive an important result, linking
the continuous symmetry measure with the correlation coef-
ficient probability measure. We show there that given a random
set of points, itsSvalue with respect to the nearest symmetric
polyhedron is given by

where F is the sampling correlation coefficient between the
original coordinates of the random points and the vertex
coordinates of the nearest symmetric polyhedron. In other
words, the minimization procedure for obtainingS can be
interpreted as a least-squares procedure for obtaining information
on an ordered structure (the perfect symmetric polyhedron) from
the given random points set. Again, the result (eq 5′) is general
and holds not only for the polyhedra but also for all cases where
a target shape is specified.

4. Properties of the Polyhedral Symmetry Measure and
Examples of Applications

I. Isosymmetry. The versatility of the measurement tool
and its application are first demonstrated in Figure 2 for a variety
of model polyhedra with a central atom, including a tetrahedron,
an equilateral trigonal bipyramid, a cube, an icosahedron, and
a dodecahedron. The nearest symmetric polyhedra are shown
as well. The specific set of distorted polyhedra in Figures 1
and 2 was set up to giveS) 14.95 for all polyhedra. We term
structures having the sameS value isosymmetric. Structures
that are isosymmetric deviate from their specific selected perfect
symmetry to the same degree. The CSM approach allows
symmetry content comparison both between various distortions
of the same polyhedron or between different polyhedra (see next
example).

II. z-Axis Jahn-Teller Type Symmetry-Reducing Mo-
tions in Model Polyhedra. Jahn-Teller (JT) effects are a
major cause of molecular symmetry reduction in general and
symmetry reduction of polyhedral transition complexes in
particular.5,6 A common distortive mode, for instance in
octahedral copper complexes, is the Eg elongation and compres-
sion along thez-axis (the Qθ mode12a), reducing the symmetry
from Oh to D4h.12 It is a central theme in our approach to
propose that rather than discussing the JT effect in terms of
jumps from one symmetry to another, it is more natural to attach
a scale to this effect in terms of the residual content of the higher
symmetry. Thus, a small JT effect in a copper complex means
a smallS(Oh) value, and larger JT distortions are manifested
by largerS values. In principle, the way is then open to link

(10) This is also a direct outcome from the Caushi-Bunykovsky inequality
(Korn, G. A.; Korn, T. M.Mathematical Handbook for Scientists and
Engineers; McGraw-Hill: New York, 1968; p 831).

N∑
k)1

N

ck
2 g (∑

k)1

N

ck)
2

Using this inequality and definition of the vectorP0k, one obtains

N∑
k)1

N

|Qk|2 g N∑
k)1

N

(P0k
t RtQk)

2 g (∑
k)1

N

P0k
t RtQk)

2 g 0

and from it the bounds ofS.

(11) Consequently, the two methods should lead to the same results. Tests
were carried out to compare the outcome of the folding-unfolding
tetrahedron algorithm3b (the only perfect polyhedral program we
developed by that method) with the results of the algorithm described
here, and as should be the case, the two resultingSvalues are indeed
the same.

(12) (a) Comba, P.; Zimmer, P.Inorg. Chem.1994, 33, 5368. (b) Chapter
6.6 in ref 5 and references therein.

S) [1 -

(∑
k)1

N

P0k
t RtQk)

2

N∑
k)1

N

|Qk|2 ] × 100 (5)

S) (1 - F2) × 100 (5′)
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quantitatively the level of spectral splitting to the degree of
symmetry distortion. It is a very important issue that deserves
an in-depth separate report. Our aim in this introductory paper
is the development of the appropriate tool and the analysis of
its properties. What we do then in this subsection is to show
that the polyhedral symmetry measure is also well behaved in
responding to gradual continuous changes in structure, of
relevance to the JT effect.

Figure 3 follows theS(G) changes of a trigonal bipyramid,
an octahedron, and an icosahedron, all without a central atom
and all deformed along thez-axis. The “deformation ratio” is
the ratio of the distances between thez-axis vertexes in the
distorted and the symmetric polyhedra. Figure 3 shows the
whole picture up to the limits. Severely distorted polyhedra
can be found in small clusters at elevated temperatures13 and
along the pathway of the isomerization of fluxional complexes.14

Let us analyze Figure 3. As should be the case, when the

deformation ratio equals 1, theSvalues for the three polyhedra
are zero. Recalling that theSscale is global so that it is possible
to compare the symmetry content of deformed polyhedra with
different numbers of vertexes, it is seen that the three polyhedra
have different symmetry sensitivities to the same distortion
parameter value and to its direction. Compression, left to the
minimum, affects the bipyramid more than the octahedron and
more than the icosahedron. On the other hand, the order of
sensitivity of elongation, right to the minimum, reverses,
icosahedron> octahedron> bipyramid. These different
orderings can be understood by considering the two different
limiting structures for the polyhedra; for elongation, it is a
straight line onto which all vertexes have coalesced, and for
the compression, it is a planar structure that contains all vertexes.
We have seen that the rate of approaching these structures
depends on the number of vertexes. Let us then consider a
polyhedron that approaches a sphere. For a sphere, the average
distance of a surface point to the diameter line is larger than
the distance to the intersecting circle that contains it. Therefore,
the effort (per vertex) to reach the nearest line increases with
the number of vertexes, while the effort to reach the nearest
plane, decreases. Finally, the limitingS values of the various
polyhedra (Figure 3) are easily calculated from their geometrical
properties and from eq 5. For instance, for the octahedron the
limits are (2/3)× 100 for infinite elongation and (1/3)× 100
for compression; see Appendix C for details.

The arguments for the relative ordering in Figure 3 hold for
the larger distortions. In fact, the picture is more complex,
because the smaller deformations behave differently. Figure
4a shows a detail of Figure 3, namely mild deformations of up
to 10%, as is commonly encountered in JT distorted molecules
and in many other coordination compounds. As seen in Figure
4a, close to the minimum, the same ordering is kept on both
sides, and the reversal of the ordering occurs only when
elongation becomes more pronounced (Figure 4b). Note that
the points of lines-crossings in Figure 4b are isosymmetric; the
two polyhedra with the same deformation ratio differ from
ideality at that point, to the same extent. Isosymmetry does
not need, however, the same deformation ratio. Pass a
horizontal line in any part of Figures 3 or 4; then all points of
intersection with that line have the sameS value and are

(13) (a) Stillinger, F. H.; Weber, T. A.J. Chem. Phys. 1984, 81, 5095. (b)
Wales, D. J.; Berry, R. S.Phys. ReV. Lett. 1994, 73, 2857.

(14) Sokolov, V. I.Introduction to Theoretical Stereochemistry; Gordon
and Breach, New York, 1991; Chapter 4.

Figure 2. Versatility of the polyhedral symmetry measure, demon-
strated (from top to bottom) for a tetrahedron, an equilateral trigonal
bipyramid, a cube, an icosahedron, and a dodecahedron, all distorted
and all with a misplaced central atom. The nearest perfect polyhedra,
identified by the computational tool, are shown as well. All of the
distorted polyhedra (and the octahedra of Figure 1) have the sameS
value of 14.95; i.e., their distances from their respective polyhedricities
are equal. Thus, all of the distorted polyhedra areisochiral.

Figure 3. Symmetry measure values,S(G), as a function of the
deformation ratio for a trigonal bipyramid, an octahedron, and an
icosahedron, all without a central atom and all deformed along thez-axis
(i.e., the axis passing through the top and bottom vertexes of the
symmetric trigonal bipyramid shown in Figure 2, through these vertexes
in the octahedronb of Figure 1, and through any opposite vertexes in
the symmetric icosahedron).
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therefore isosymmetric, i.e., all, whether the same polyhedra
or different ones, deviate similarly from perfect polyhedricity.

III. Tantalum Hydride Complexes. It is important to
demonstrate that the polyhedral CSM approach is a working
tool on real molecules beyond models, so these will be the next
four cases of this section. For this purpose, we selected some
cases from the published literature where distortion of symmetry
has been a noticeable observation or a main issue. We begin
with the report of Visciglio et al.15 who studied the structure of
six-coordinated tantalum dihydrides as part of ongoing research
on the mechanism of the catalytic activity of transition metal
hydrides. Catalytic activity is often highly sensitive to the
intricate details of structure, and so in particular these authors
reported that the analysis of the solid-state structure of Ta(H)2-
(OC6H3Pri2-2,6)3(PMe2Ph) revealed this complex to be “severely
distorted from octahedral”. The point we wish to make here is
simplesthe CSM methodology allows one to quantify this type
of statement, which abounds in the literature, into a quantitative
one; the degree of octahedricity,S(Oh), of this complex is 4.37.
Beyond quantification of statements of distortion, scaling the
degree of symmetry opens the possibility to look for quantitative
correlations between properties, say catalytic activity in this
example and symmetry (see below).

IV. Pentacoordinated Zinc. The previous case was de-
scribed as “severely distorted”.15 To build a bridge between

the routine qualitative language of crystallographers and the
symmetry scale, let us take now a case that is described as
“slightly distorted”. It is the pentacoordinated Zn trigonal
bipyramid, [Zn(II)]2(diacetoamido-glutarate)-hexaaquo‚2H2O,
studied by Gomez-Lara et al.16 in the context of the interaction
of transition metal ions withN-acetylated groups in proteins.
The coordination is to oxygen atoms, two of the glutarate and
three of the water molecules. Another feature of the CSM
approach is that while details for this complex are given in a
lengthy table (Table 3 in ref 16), as is the routine practice, the
methodology presented here allows a significant condensation
in grasping the deviation, from a table full of data to a single
value, which in this case isS(D3h-equilateral)) 1.48. It is in
order to recall here thatS is a global value from which specific
structural details cannot be extracted back. This globality is
both the weakness and the strength of that approach, as with
any thermodynamic function. Thus, the strength here is that
the S(Oh) ) 4.37 of the previous tantalum complex and the
S(D3h) ) 1.48 are on the same scale and can be compared. As
a result of space limitation, we are not reproducing the original
tables and figures of these two complexes, but the interested
reader who wishes to see what is meant by “severely distorted”
and by “slightly distorted” may wish to compare Figure 2 in
ref 15 and Figure 1 in ref 16.

Finally, we use this Zn complex study in order to comment
on the limits of sensitivity of the CSM measurement tool. The
Zn complex crystallized in fact as a dimer of two complexes;
one has anSvalue of 1.4776 and the other 1.4687. Because of
its importance, we devote a separate report to the issue of
evaluating of errors inS(G) and assessing the probability that
a given symmetry can be assigned to a (distorted) structure, on
the basis of the uncertainty in the X-ray data (cf. also ref 9a).

V. Which Symmetry Represents Better a Given Com-
plex? The “either/or” attitude toward symmetry labeling leads
often to a “conflict of identity”, in particular in cases where the
structure shows characteristics of two different polyhedra, either
because it seems to be similarly distorted with respect to the
two options or because it is relevant to count all or only part of
the ligand bonds.17 One finds in such reports lengthy discus-
sions on whether the structure is that of polyhedron A or of
polyhedron B. The CSM approach addresses this conflict in a
natural way; it characterizes the structure in terms of the degree
of polyhedricity A as well as the degree of polyhedricity B,
two values that are on the same scale. Unclear polyhedral
identity characterizes, for instance, some tin complexes where,
depending on how many of the differently attached ligands are
counted, the complex may be regarded as either a tetrahedron
or a trigonal bipyramid,17 or as either a tetrahedron or an
octahedron.18 The latter case was addressed recently by Cea-
Oliveras et al.18 who have prepared SnS6 complexes where four
sulfur atoms are coordinated directly and two additional sulfur
atoms, which are located within octane rings, interact trans-
annularly with the central Sn (see Figure 1 in ref 18). Thus, a
main discussion point in that study were structures that “can
best be described as intermediate between tetrahedral and
octahedral”, concluding for the SnS6 structures that the “possible
relation with an octahedral geometry is less obvious”.18 By the
CSM approach, the SnS6 structure has anS(Oh) value of 8.11.
As for the SnS4, our methodology actually allows one to carry

(15) Visciglio, V. M.; Fanwick, P. E.; Rothwell, I. P.J. Chem. Soc., Chem.
Commun.1992, 1505. Here and below, coordinates are available on
the PDB.

(16) Gomez-Lara, J.; Toscano, R. A.; Negron, G.; Zarate, E.; Campero,
A. J. Chem. Crystallogr.1994, 24, 441.

(17) For example: Swisher, R. G.; Holmes, R. R.Organometallics1984,
3, 365.

(18) Cea-Oliveras, R.; Lomeli, V.; Hernandez-Ortega, S.; Haiduc, I.
Polyhedron1995, 14, 747.

Figure 4. Details of Figure 3: (a) mild deformation levels (deformation
ratio -1 is used here for clarity); (b) crossing points of the symmetry/
deformation-ratio lines.
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a blind search over all S4 combinations out of the S6 ligands,
looking for theminimal S(Td) value. When one does so (Table
1), one obtains that the best tetrahedron has anS(Td) value of
0.95, significantly lower than the octahedricity value. The tin
complex is much better described as a (slightly distorted)
tetrahedron than an octahedron, from which it deviates signifi-
cantly.

VI. The Degree of Icosahedricity of Distorted C60-
Fullerene Anions. In all previous examples, both model and
real, the number of vertexes of the perfect polyhedron was the
minimal to support the polyhedricity. However, the tool we
developed here is capable in fact of dealing withany number
of vertexes that can support a given polyhedricity. Thus,
whereas above we looked at a 12-vertex icosahedron, we shall
now analyze a 60-vertex distorted icosahedron. We selected
this example because of the substantial interest in the structural
changes that the perfect icosahedral C60 fullerene undergoes
upon substitution, ionization, and intracage entrapment.19 Many
of the properties of this molecule are intimately related to its
high, perfect symmetry and therefore also to distortions from
it. The example we have chosen is the study of Green et al.20

on the electronic structures of a series of C60 anions. Green et
al. found that the perfect icosahedricity of the fullerene is
distorted upon extra charging of this molecule and that the
degree of this JT-induced distortion changes with amount of
charge. An excellent correlation between the degree of icosa-
hedricity and charge was obtained (Figure 5). It is significant
that bond lengths and the norm distortion vectors (Table 1 in
ref 20) do not follow the increase in charge, whereas the
symmetry measure does; a global descriptor, symmetry, works
here much better than a specific, local one. A detailed analysis

of the unique correlation of Figure 5, made possible in fact only
by treating symmetry as a measurable quantity, and of other
correlations that emerge from ref 20 will be the topic of a
separate report, due to the special importance of this molecule.

5. Conclusion

We have extended the continuous symmetry measures ap-
proach to polyhedra. The methodology and the general
computational tool we developed are general and applicable to
the assessment of the minimal distance of a structure to any
desired shape. Specifically, we demonstrated the polyhedricity
measure for the quantitative evaluation of the symmetry of the
most abundant polyhedral structures, both on models and on
real examples. The correlation found for the fullerene case
(Figure 5) points to the direction of our future activity in this
field; once the degree of polyhedricity can be measured, how
do the various properties of polyhedral complexes, clusters, and
covalent structures correlate quantitatively with symmetry? We
have already reported on three other cases where symmetry as
a global structural parameter correlates better with physical/
chemical properties than specific descriptors. One case has been
the relation between the degree of chirality of enzymatic
inhibitors and their inhibition efficiency,21 a second case related
the symmetry-normalized energy of isomerization of chiral
fullerenes to their size,22 and a third case identified the melting
point of deuterium clusters.4a In fact, these correlations along
with the new one shown in Figure 5 strengthen our belief that
the specific symmetry measurement tool we designed reflects
the physical world properly.
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Appendix A: The Minimizations

a. Minimization with Respect to the Translation Vector
T. Differentiating eq 4 with respect to the vectorT and setting
the derivative equal to zero yields

(19) Fowler, P. W.; Ceulemans, A.J. Phys. Chem. 1995, 99, 508.
(20) Green, W. H., Jr.; Gorun, S. M.; Fitzgerald, G.; Fowler, P. W.;

Ceulemans, A.; Titeca, B. C.J. Phys. Chem. 1996, 100, 14892.

(21) Keinan, S.; Avnir, D.J. Am Chem. Soc. 1998, 120, 6152.
(22) Pinto, Y.; Fowler, P. W.; Mitchell, D.; Avnir, D.J. Phys. Chem. 1998,

102, 5776.

Table 1. Degree of the Octahedricity and of All Possible
Tetrahedricities of SnS6

18

symmetry measures atom nos.a

struct G S(G) 1 2 3 4 5 6 7

1 Oh 8.11 * * * * * * *
2 Td 27.41 * * * * *
3 Td 14.12 * * * * *
4 Td 14.85 * * * * *
5 Td 7.14 * * * * *
6 Td 17.18 * * * * *
7 Td 19.88 * * * * *
8 Td 13.71 * * * * *
9 Td 13.51 * * * * *

10 Td 32.27 * * * * *
11 Td 16.75 * * * * *
12 Td 16.97 * * * * *
13 Td 6.81 * * * * *
14 Td 16.29 * * * * *
15 Td 0.95 * * * * *
16 Td 17.92 * * * * *

a Numbering of the sulfur atoms:

Figure 5. C60-fullerene anions undergo Jahn-Teller distortion of the
original prefect icosahedral structure of the neutral molecule.20 Shown
is the correlation between the degree of icosahedricity of C60-fullerene
anions and their charge. (For the distorted dianion: upper point, singlet;
lower, triplet.)
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Since we chose to place both centers of mass (of the original
and of the general shape, prototype polyhedrons) at the origin
of coordinates, this equation givesT ) 0. Consequently, the
centers of mass of the nonsymmetric polyhedron and the nearest
perfect polyhedron coincide as well. In what follows, we use
thereforeT ) 0 and minimize the function

In (A2) the upper index t shows the transposition of the matrix
or vector. As rotation does not affect the distance between the
center of mass and vertexes, the last term in (A2) can be taken
as

Hence, eq A2 can be written as

b. Minimization with Respect to the Scaling FactorA.
Differentiating (A2′) with respect toA and setting the derivative
equal to zero, we derive the equation for the scaling factor,

c. Minimization with Respect to Rotation Angles. The
rotation matrixR can be determined using three rotation angles
R, â, γ. By differentiation of (A2′) with respect to Eulerian
angles and setting the derivatives equal to zero, the following
equations for rotations angles are derived.

It is essential to point out that the solutions to eq A4, are
independent of the scaling factor,A. Therefore, eqs A3 and
A4 can be solved independently. Thus, one can first solve eq
A4 and then use the data to calculate the scaling factorA from
eq A3. As a rule, eq A4 cannot be solved analytically. To
solve it methods described in refs 23 and 24 can be used.
Substituting (A1) and (A3) into (1) and taking into account the
fact that the center of mass of an asymmetric polyhedron is
located at the origin of coordinates (i.e.,Q0 ) 0), we arrive at
eq 5.

Appendix B: Probability Theory Interpretation of the
Symmetry Measure

It is interesting to note that eq 5 can be interpreted in terms
of probability theory. Let us assumeQk to be a random set of

points coordinates with zero average, i.e., withQ0 ) 0. Using
this random set, we obtain the nearest symmetric polyhedron
to it (in the statistical sense). To see that this is indeed possible,
let us rewrite (5) as

The expression in the square brackets is in fact a sampling
correlation coefficient,F, between the original random coordi-
nates and the vertex coordinates of the nearest symmetric
polyhedron. Thus, it is possible to connect the continuous
symmetry measureS with the correlation coefficientF:

Appendix C: The Limiting S(Oh) Values of a Perfect
Octahedron Undergoingz-Axis Distortions

For extreme elongation of the octahedron along thez-axis,
the distanceQ between the two vertexes on theZ-axis and center
of mass is much larger than the distances of the other vertexes.
Using eq 5, one obtains then

For extreme compression, the situation reverses; the distance
of the twoz-axis vertexes to the center of mass approaches zero,
and one must take into account only the four other distances.
From eq 5

These two limits are clearly seen in Figure 3.

IC9804925

(23) Arun, K. S.; Huang, T. S.; Blostein, S. D.IEEE Trans. Pattern Anal.
Machine Intel. 1987, PAMI-9, 698.

(24) Horn, B. K. P.J. Opt. Soc. Am. 1987, A4, 629.
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